
Text Summarization

Research

Overview

Approach

Assumptions

Bibliography

Output

Python

Example

Sample Input

Sample Output

Code

Text Summarization

Extractive summary of input article.

Author: Nishit Jain 

Email: nishitjain1997@gmail.com

Source: Github

Research

Overview

Extractive text summarization is a type of Automated Text Summarization (summarization

using computers) in which the summary is made up of complete sentences picked from the

original text. To achieve this, each sentence is given a relevance ranking and the top most

relevant sentences are picked for the summary.

Approach

This is an unsupervised summary algorithm which is an amalgamation of the TextRank

algorithm given by Mihalcea et al. and the Feature Term based method given by Suneetha

Manne et al. The scores given by TextRank algorithm are enhanced by extracting additional

word-level and sentence-level features to incorporate both semantic and syntactic meaning

in the scores.

�. TextRank algorithm

Each sentence is converted into a Sentence Vector by taking the average of the

Glove embeddings of each word in that sentence.

Pairwise Cosine Similarity of Sentence Vectors is used to create a similarity

matrix of sentences.

The similarity matrix is used to build a directed graph, which is then fed into Googleʼs

PageRank algorithm to give a score to each sentence. The sentence that is most

similar to all sentences in the text supposedly contains ideas from them all and should

be considered in the summary.

mailto:nishitjain1997@gmail.com
https://github.com/nishitjain97/Text-Summarization


�. Feature Term based method. The features extracted include:

Resultant Term Weight: This denotes the amount of information conveyed by

each word in the sentence. It is a product of the Term Weight (normalized

frequency of word) and Inverse Sentence Frequency (log of ratio of number of

sentences and number of appearances of the term).

Sentence Weight: Parts of Speech tagging to ensure include syntactic meaning

of words. Ratio of number of noun and verb terms in a sentence to the total

number of terms in all sentences.

Sentence Position: Sentences coming at the beginning contain more generalized

ideas while those coming in the middle contain more specific ideas.

Sentence Length: A normalization term to prevent longer sentences from

dominating shorter sentences. Gives score per unit length of sentence

Assumptions

�. The extractive summary has been limited to 3 lines.

�. This is a single-document summary algorithm.

Bibliography

�. Mihalcea R., &, Tarau P. (2004). TextRank: Bringing Order into Texts. (W04-3252).

Proceedings of the 2004 Conference on Empirical Methods in Natural Language

Processing

�. Manne S., &, Fatima S. (2012). A Feature Terms based Method for Improving Text

Summarization with Supervised POS Tagging. (10.5120/7494-0541). International

Journal of Computer Applications (0975 – 8887).

�. Jagadeesh J., &, Pingali P., &, Varma V. (2005). Sentence Extraction Based Single

Document Summarization. (IIIT/TR/2008/97). Workshop on Document Summarization,

19th and 20th March, 2005, IIIT Allahabad.

Output
The summary for the article will be stored in 'output.txt' file in root directory.

Python
This script has been developed in and tested for Python3. It has not been tested for

Python2.

Example

Sample Input

S.No. News Article

Feature Rank =  

Sentence Length
(σ(Resultant Term Weight) + Sentence Weight + Sentence Position)

Final Score = 0.8 ∗ Text Rank + 0.2 ∗ Feature Rank

http://s.no/


S.No. News Article

1

The U.N. Security Council approved a resolution Monday to send 4,200

peacekeepers to Abyei, Sudan, as part of a recent agreement between Sudan

and Southern Sudan.

2

The resolution will establish, for six months, the United Nations Interim Security

Force for Abyei (UNISFA), comprising "a maximum of 4,200 military personnel,

50 police personnel, and appropriate civilian support," the resolution states.

3 It passed the council unanimously, 15-0.

4
In a statement released by the State Department, Secretary Hiliary Clinton

commended the swift passage of the resolution.

5
"Abyei has been a source of regional tension for many years," the statement

said.

6

"We urge the parties to reach an immediate cease-fire and to provide aid

workers with the unfettered access required to deliver humanitarian assistance

to innocent civilians affected by the conflict."

7

A week ago, the Sudanese government and the Sudan People's Liberation

Movement signed an agreement to allow peacekeepers in Abyei, aimed at ending

strife that has ravaged much of the country.

8

The two sides agreed in principle on the need for a third party to monitor the ill-

defined border between north and south before the scheduled July 9

independence for the south.

9

The U.N. peacekeepers will "monitor and verify the redeployment of any Sudan

Armed Forces, Sudan People's Liberation Army or its successor" from the Abyei

area, among other tasks, the Security Council resolution states.

Sample Output

The U.N. Security Council approved a resolution Monday to send 4,200 peacekeepers to

Abyei, Sudan, as part of a recent agreement between Sudan and Southern Sudan. A week

ago, the Sudanese government and the Sudan People's Liberation Movement signed an

agreement to allow peacekeepers in Abyei, aimed at ending strife that has ravaged much of

the country. The U.N. peacekeepers will "monitor and verify the redeployment of any Sudan

Armed Forces, Sudan People's Liberation Army or its successor" from the Abyei area, among

other tasks, the Security Council resolution states.

http://s.no/


import nltk
import os
import re
import spacy
import sys
import unicodedata

import networkx as nx
import numpy as np
import pandas as pd

nltk.download('punkt')
nltk.download('stopwords')

from nltk.corpus import stopwords
from nltk.tokenize import sent_tokenize
from sklearn.metrics.pairwise import cosine_similarity

# Root directory
root = '.'
# Loading Spacy for Parts-of-Speech tagging.
nlp_spacy = spacy.load('en', parse=True, tag=True)
# Loading list of stopwords
stop_words = stopwords.words('english')

"""
  For TextRank Algorithm.
"""
def remove_extraneous_text(sentence:str)->str:
  """
    Input: String
    Output: String
    Takes a news article as input and removes extra spaces and reporting 
location from it.
  """
  # Remove multiple spaces
  sentence = re.sub(" +", " ", sentence)

  # Remove reporting location
  if ") --" in sentence:
    sentence = sentence.split(") --")[-1]

  # Remove media name from article
  if "(CNN)" in sentence:
    sentence = sentence.split("(CNN)")[-1]

  return sentence

def remove_stopwords(sentence:str)->str:
  """
    Input: String
    Output: String
    Takes a sentence as input and returns the sentence after removing all 
stopwords.
  """

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

56



  sentence = " ".join([word for word in sentence.split() if word not in 
stop_words])

  return sentence

def lemmatize_text(sentence:str)->str:
  """
    Input: String
    Output: String
    Takes a sentence as input and uses Spacy to convert each word into it's 
lemma.
  """
  sentence = nlp_spacy(sentence)
  sentence = ' '.join([word.lemma_ if word.lemma_ != "-PRON-" else word.text 
for word in sentence])
  return sentence

def clean_text(sentence:str)->str:
  """
    Input: String
    Output: String
    Takes a sentence and cleans by:
     - Converting to lowercase
     - Remove non alphabetic characters
     - Removing extraneous characters
     - Removing stopwords
     - Lemmatizing words
  """
  sentence = sentence.lower()
  sentence = re.sub("[^a-zA-Z]", " ", sentence)
  sentence = remove_extraneous_text(sentence)
  sentence = remove_stopwords(sentence)
  sentence = lemmatize_text(sentence)
  return sentence

"""
  For Feature Term enhancements.
"""
def get_total_terms(cleaned_sentences:list)->int:
  """
    Input: List
    Output: Int
    Takes in a list of sentences and returns total number of tokens in those 
sentences.
  """
  total_terms = 0

  for sentence in cleaned_sentences:
    total_terms += len(sentence.split())

  return total_terms

def get_term_frequencies(cleaned_sentences:list)->dict:
  """
    Input: List
    Output: Dict

57

58
59
60
61
62
63
64
65

66
67
68

69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
110
111



    Takes in a list of sentences and returns a dictionary containing Tokens 
as keys and their frequencies as values.
  """
  freq_dict = {}

  for sentence in cleaned_sentences:
    for word in sentence.split():
      freq_dict[word] = freq_dict.get(word, 0) + 1

  return freq_dict

def get_term_weights(cleaned_sentences:list)->dict:
  """
    Input: List
    Output: Dict
    Takes in a list of sentences and returns a dictionary containing Tokens 
as keys and their weightage as values.
    The weight is calculated using formula:
          TW(ti) = (TF(ti) * 1000) / (Nt)
    where ti is each token, TW is term weight, TF is term frequency and Nt is 
total number of terms
  """
  total_terms = get_total_terms(cleaned_sentences)
  term_freq_dict = get_term_frequencies(cleaned_sentences)
  term_weights = dict()

  for key, value in term_freq_dict.items():
    term_weights[key] = (value * 1000) / total_terms

  return term_weights

def inverse_sentence_frequency(cleaned_sentences:list)->dict:
  """
    Input: List
    Output: Dict
    Takes in a list of sentences and returns a dictionary containing Tokens 
as keys and their inverse sentence frequency as values.
    The inverse sentence frequency is calculated as:
          ISF(ti) = log((Ns) / Nti)
    where ti is each token, ISF is inverse sentence frequency, Ns is total 
number of sentences in paragraph and Nti are the total number of
    sentences in which ti appeared in that paragraph.
  """
  vocabulary = set()

  for sentence in cleaned_sentences:
    vocabulary = vocabulary.union(set(sentence.split()))

  isf = dict()
  number_of_sentences = len(cleaned_sentences)

  for word in vocabulary:
    number_of_appearances = 0

    for sentence in cleaned_sentences:
      if word in sentence:
        number_of_appearances += 1

    isf[word] = np.log(number_of_sentences / number_of_appearances)

112

113
114
115
116
117
118
119
120
121
122
123
124
125
126

127
128
129

130
131
132
133
134
135
136
137
138
139
140
141
142
143
144

145
146
147

148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166



  return isf

def word_weights(cleaned_sentences:str)->dict:
  """
    Input: List
    Output: Dict
    Takes in a list of sentences and returns a dictionary containing Tokens 
as keys and their resultant weightage as values.
    The weightage is calculated as:
          RW(ti) = ISF(ti) * TW(ti)
    where ti is each token, RW is resultant weightage, ISF is inverse 
sentence frequency and TW is term weightage.
  """

  term_weights = get_term_weights(cleaned_sentences)
  inverse_sentence_freq = inverse_sentence_frequency(cleaned_sentences)

  resultant_weights = dict()

  for word in term_weights.keys():
    resultant_weights[word] = term_weights[word] * 
inverse_sentence_freq[word]

  return resultant_weights

def pos_tagging(cleaned_sentences:list)->list:
  """
    Input: List
    Output: List
    Takes in a list of sentences and returns a list of lists, where each 
Token is represented as a tuple of the form (Token, POS tag).
  """
  tagged_sentences = []

  for sentence in cleaned_sentences:
    sentence_nlp = nlp_spacy(sentence)

    tagged_sentence = []

    for word in sentence_nlp:
      tagged_sentence.append((word, word.pos_))

    tagged_sentences.append(tagged_sentence)

  return tagged_sentences

def sentence_weights(tagged_sentences:list, total_terms:int)->list:
  """
    Input: List, Int
    Output: List
    Takes in a list of POS tagged sentences and total number of terms. 
Returns a list containing the sentence weight of each sentence.
    The sentence weight is calculated as:
          SW(si) = Number of nouns and verbs in sentence / total number of 
terms in paragraph.
  """
  sent_weights = []

  for sentence in tagged_sentences:
    relevance_count = 0

167
168
169
170
171
172
173

174
175
176

177
178
179
180
181
182
183
184
185

186
187
188
189
190
191
192
193

194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213

214
215

216
217
218
219
220



    for word, tag in sentence:
      if tag == 'NOUN' or tag == 'VERB':
        relevance_count += 1

    sent_weights.append(relevance_count / total_terms)

  return sent_weights

def sentence_position(cleaned_sentences:list)->list:
  """
    Input: List
    Output: List
    Takes in a list of sentences and returns weight for each sentence based 
on it's position.
  """
  sent_position = []
  number_of_sentences = len(cleaned_sentences)

  weights = [0, 0.25, 0.23, 0.14, 0.08, 0.05, 0.04, 0.06, 0.04, 0.04, 0.15]

  for i in range(1, len(cleaned_sentences)+1):
    sent_position.append(weights[int(np.ceil(10 * (i / 
number_of_sentences)))])
  return sent_position

def sentence_length(cleaned_sentences:list)->list:
  """
    Input: List
    Output: List
    Takes in a list of sentences and returns a list containing length of each 
sentence.
  """
  sent_len = []

  for sentence in cleaned_sentences:
    sent_len.append(len(sentence.split()))

  return sent_len

"""
  Functions to rank sentences.
"""
def text_rank(sentences:list, word_embeddings:dict)->dict:
  """
    Input: List, Dict
    Output: Dict
    Takes a list of sentences and Glove word embeddings as input and returns 
a dictionary containing sentences index as key and rank as value.
    The ranking is done based on the PageRank algorithm
  """
  # Clean sentences for PageRank algorithm.
  clean_sentences = pd.Series(sentences).str.replace("[^a-zA-Z]", " ")
  clean_sentences = [s.lower() for s in clean_sentences]
  clean_sentences = [remove_stopwords(r) for r in clean_sentences]

221
222
223
224
225
226
227
228
229
230
231
232
233
234

235
236
237
238
239
240
241
242

243
244
245
246
247
248
249

250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268

269
270
271
272
273
274
275



  # Replace each word with Glove embeddings. The Sentence vector is the 
average of the sum of embeddings of all words in that
  # sentence.
  sentence_vectors = []
  for i in clean_sentences:
    if len(i) != 0:
      v = sum([word_embeddings.get(w, np.zeros((100, ))) for w in i.split()]) 
/ (len(i.split()) + 0.001)
    else:
      v = np.zeros((100, ))
    sentence_vectors.append(v)

  # Initialize a similarity matrix for pair of sentences
  sim_mat = np.zeros([len(sentences), len(sentences)])

  # Calculate cosine similarity for each pair of sentences
  for i in range(len(sentences)):
    for j in range(len(sentences)):
      if i != j:
        sim_mat[i][j] = cosine_similarity(sentence_vectors[i].reshape(1, 
100), sentence_vectors[j].reshape(1, 100))[0, 0]

  # Create a PageRank graph using similarity matrix
  nx_graph = nx.from_numpy_array(sim_mat)
  scores = nx.pagerank(nx_graph)

  return scores

def feature_rank(sentences:list)->dict:
  """
    Input: List
    Output: Dict
    Takes a list of sentences as input and returns a dict containig ranking 
of each sentence.
    The ranking is calculated using word and sentence level features.
  """
  cleaned_sentences = [clean_text(sentence) for sentence in sentences]

  term_weights = word_weights(cleaned_sentences)
  tagged_sentences = pos_tagging(cleaned_sentences)
  total_terms = get_total_terms(cleaned_sentences)
  sent_weights = sentence_weights(tagged_sentences, total_terms)
  sent_position = sentence_position(cleaned_sentences)
  sent_len = sentence_length(cleaned_sentences)

  sentence_scores = []

  for index, sentence in enumerate(cleaned_sentences):
    score = 0

    for word in sentence.split():
      score += term_weights[word]

    score *= sent_weights[index]
    score += sent_position[index]

    if sent_len[index] != 0:
      score /= sent_len[index]
    else:
      score = 0

276

277
278
279
280
281

282
283
284
285
286
287
288
289
290
291
292
293

294
295
296
297
298
299
300
301
302
303
304
305

306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331



    sentence_scores.append(score)

  sentence_scores = sentence_scores / np.sum(sentence_scores)

  final_scores = dict()

  for i in range(len(sentence_scores)):
    final_scores[i] = sentence_scores[i]

  return final_scores

def main()->None:
  """
    The driver function.
  """

  # Path to input file
  input_filepath = os.path.join(root, sys.argv[-1])

  if not os.path.exists(input_filepath):
    # Check if input file does not exist.
    print("Could not find input file at location '%s'" % (input_filepath))
    return

  input_text = ""

  with open(input_filepath, 'r') as f:
    input_text = f.read()

  # Location of Glove word embeddings.
  glove_location = os.path.join(root, 'embeddings', 'glove.6B.100d.txt')

  if not os.path.exists(glove_location):
    # Check if word embeddings do not exist.
    print("Could not find Glove Word Embeddings. Kindly download from 
'https://drive.google.com/open?id=1cQBYwoLHZzHk4w8zdgcSPFmOP5Xq-x0z' \
      and save in './embeddings' location.")
    return

  print("Loading Glove Word embeddings.")
  
  # Dictionary to store embeddings
  word_embeddings = {}

  # Open file and load embeddings in memory
  f = open(glove_location, encoding='utf-8')
  for line in f:
    values = line.split()
    word = values[0]
    coefs = np.asarray(values[1:], dtype='float32')
    word_embeddings[word] = coefs
  f.close()

  print("Embeddings loaded.")

332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372

373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390



  print("Creating summary.")

  sentences = sent_tokenize(input_text)
  text_rank_scores = text_rank(sentences, word_embeddings)
  feature_rank_scores = feature_rank(sentences)

  final_scores = dict()
  for i in range(len(text_rank_scores.keys())):
    final_scores[i] = 0.8 * text_rank_scores[i] + 0.2 * 
feature_rank_scores[i]

  ranked_sentences = sorted(((final_scores[i], s, i) for i, s in 
enumerate(sentences)), reverse=True)[:3]
  ranked_sentences = sorted(ranked_sentences, key=lambda x: x[2])

  output_text = ""
  for i in range(len(ranked_sentences)):
    output_text += ranked_sentences[i][1] + ' '

  with open('output.txt', 'w') as f:
    f.write(output_text.strip())
  print("Summary stored in 'output.txt'.")

if __name__ == '__main__':
  if len(sys.argv) != 2:
    print("The syntax to run this program is: 'python run.py file_name.txt'")
  else:
    main()

391
392
393
394
395
396
397
398
399
400

401
402

403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418


